中考數(shù)學(xué)常用公式定理
※ 整數(shù)(包括:正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)(包括:有限小數(shù)和無(wú)限環(huán)循小數(shù))都是有理數(shù).如:-3,,0.231,0.737373…,,.無(wú)限不環(huán)循小數(shù)叫做無(wú)理數(shù).如:π,-,0.1010010001…(兩個(gè)1之間依次多1個(gè)0).有理數(shù)和無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù).
※ 絕對(duì)值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.
※ 一個(gè)近似數(shù),從左邊笫一個(gè)不是0的數(shù)字起,到最末一個(gè)數(shù)字止,所有的數(shù)字,都叫做這個(gè)近似數(shù)的有效數(shù)字.如:0.05972精確到0.001得0.060,結(jié)果有兩個(gè)有效數(shù)字6,0.
※ 把一個(gè)數(shù)寫(xiě)成±a×10n的形式(其中1≤a<10,n是整數(shù)),這種記數(shù)法叫做科學(xué)記數(shù)法.如:-40700=-4.07×105,0.000043=4.3×10-5.
※ 乘法公式(反過(guò)來(lái)就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.
※ 冪的運(yùn)算性質(zhì):①am×an=am+n.②am÷an=am-n.③(am)n=amn.④(ab)n=anbn.⑤()n=n.
⑥a-n=,特別:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)?=1,(-)0=1.
※ 二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0時(shí),=-a.④的平方根=4的平方根=±2.(平方根、立方根、算術(shù)平方根的概念)
※ 一元二次方程:對(duì)于方程:ax2+bx+c=0:
①求根公式是x=,其中△=b2-4ac叫做根的判別式.
當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;
當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;
當(dāng)△<0時(shí),方程沒(méi)有實(shí)數(shù)根.注意:當(dāng)△≥0時(shí),方程有實(shí)數(shù)根.
②若方程有兩個(gè)實(shí)數(shù)根x1和x2,并且二次三項(xiàng)式ax2+bx+c可分解為a(x-x1)(x-x2).
③以a和b為根的一元二次方程是x2-(a+b)x+ab=0.
※ 一次函數(shù) y=kx+b(k≠0)的圖象是一條直線(b是直線與y軸的交點(diǎn)的縱坐標(biāo)即一次函數(shù)在y軸上的截距).當(dāng)k>0時(shí),y隨x的增大而增大(直線從左向右上升);當(dāng)k<0時(shí),y隨x的增大而減小(直線從左向右下降).特別:當(dāng)b=0時(shí),y=kx(k≠0)又叫做正比例函數(shù)(y與x成正比例),圖象必過(guò)原點(diǎn).
※ 反比例函數(shù)y=(k≠0)的圖象叫做雙曲線.當(dāng)k>0時(shí),雙曲線在一、三象限(在每一象限內(nèi),從左向右降);當(dāng)k<0時(shí),雙曲線在二、四象限(在每一象限內(nèi),從左向右上升).因此,它的增減性與一次函數(shù)相反.
※ 統(tǒng)計(jì)初步:(1)概念:①所要考察的對(duì)象的全體叫做總體,其中每一個(gè)考察對(duì)象叫做個(gè)體.從總體中抽取的一部份個(gè)體叫做總體的一個(gè)樣本,樣本中個(gè)體的數(shù)目叫做樣本容量.②在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)(有時(shí)不止一個(gè)),叫做這組數(shù)據(jù)的眾數(shù).③將一組數(shù)據(jù)按大小順序排列,把處在最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù).
(2)公式:設(shè)有n個(gè)數(shù)x1,x2,…,xn,那么:
①平均數(shù)為:;
②極差:
用一組數(shù)據(jù)的最大值減去最小值所得的差來(lái)反映這組數(shù)據(jù)的變化范圍,用這種方法得到的差稱為極差,即:極差=最大值-最小值;
③方差:
數(shù)據(jù)、……, 的方差為,則=
標(biāo)準(zhǔn)差:方差的算術(shù)平方根.
數(shù)據(jù)、……, 的標(biāo)準(zhǔn)差,則=
一組數(shù)據(jù)的方差越大,這組數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定。
※ 頻率與概率:
(1)頻率=,各小組的頻數(shù)之和等于總數(shù),各小組的頻率之和等于1,頻率分布直方圖中各個(gè)小長(zhǎng)方形的面積為各組頻率。
(2)概率
①如果用P表示一個(gè)事件A發(fā)生的概率,則0≤P(A)≤1;
P(必然事件)=1;P(不可能事件)=0;
②在具體情境中了解概率的意義,運(yùn)用列舉法(包括列表、畫(huà)樹(shù)狀圖)計(jì)算簡(jiǎn)單事件發(fā)生的概率。
③大量的重復(fù)實(shí)驗(yàn)時(shí)頻率可視為事件發(fā)生概率的估計(jì)值;
※ 銳角三角函數(shù):
①設(shè)∠A是Rt△ABC的任一銳角,
則∠A的正弦:sinA=,
∠A的余弦:cosA=,
∠A的正切:tanA=.
并且sin2A+cos2A=1.
0
<sinA<
1,0<cosA<
1,tanA>
0.∠A越大,∠A的正弦和正切值越大,余弦值反而越?。?/div>
②余角公式:sin(90?-A)=cosA,cos(90?-A)=sinA.
③特殊角的三角函數(shù)值:sin30?=cos60?=,sin45?=cos45?=,sin60?=cos30?=, tan30?=,tan45?=1,tan60?=.
④斜坡的坡度:i==.設(shè)坡角為α,則i=tanα=.
※ 平面直角坐標(biāo)系中的有關(guān)知識(shí):
(1)對(duì)稱性:若直角坐標(biāo)系內(nèi)一點(diǎn)P(a,b),則P關(guān)于x軸對(duì)稱的點(diǎn)為P1(a,-b),P關(guān)于y軸對(duì)稱的點(diǎn)為P2(-a,b),關(guān)于原點(diǎn)對(duì)稱的點(diǎn)為P3(-a,-b).
(2)坐標(biāo)平移:若直角坐標(biāo)系內(nèi)一點(diǎn)P(a,b)向左平移h個(gè)單位,坐標(biāo)變?yōu)?font face="Times New Roman" color="">P(a-h,b),向右平移h個(gè)單位,坐標(biāo)變?yōu)?font face="Times New Roman" color="">P(a+h,b);向上平移h個(gè)單位,坐標(biāo)變?yōu)?font face="Times New Roman" color="">P(a,b+h),向下平移h個(gè)單位,坐標(biāo)變?yōu)?font face="Times New Roman" color="">P(a,b-h(huán)).如:點(diǎn)A(2,-1)向上平移2個(gè)單位,再向右平移5個(gè)單位,則坐標(biāo)變?yōu)?/font>A(7,1).
※ 二次函數(shù)的有關(guān)知識(shí):
1.定義:一般地,如果是常數(shù),,那么叫做的二次函數(shù).
2.拋物線的三要素:開(kāi)口方向、對(duì)稱軸、頂點(diǎn).
①的符號(hào)決定拋物線的開(kāi)口方向:當(dāng)時(shí),開(kāi)口向上;當(dāng)時(shí),開(kāi)口向下;
相等,拋物線的開(kāi)口大小、形狀相同.
②平行于軸(或重合)的直線記作.特別地,軸記作直線.
幾種特殊的二次函數(shù)的圖像特征如下:
函數(shù)解析式
開(kāi)口方向
對(duì)稱軸
頂點(diǎn)坐標(biāo)
當(dāng)時(shí)
開(kāi)口向上
當(dāng)時(shí)
開(kāi)口向下
(軸)
(0,0)
(軸)
(0, )
(,0)
(,)
()
4.求拋物線的頂點(diǎn)、對(duì)稱軸的方法
(1)公式法:,∴頂點(diǎn)是,對(duì)稱軸是直線.
(2)配方法:運(yùn)用配方的方法,將拋物線的解析式化為的形式,得到頂點(diǎn)為(,),對(duì)稱軸是直線.
(3)運(yùn)用拋物線的對(duì)稱性:由于拋物線是以對(duì)稱軸為軸的軸對(duì)稱圖形,對(duì)稱軸與拋物線的交點(diǎn)是頂點(diǎn)。
若已知拋物線上兩點(diǎn)(及y值相同),則對(duì)稱軸方程可以表示為:
9.拋物線中,的作用
(1)決定開(kāi)口方向及開(kāi)口大小,這與中的完全一樣.
(2)和共同決定拋物線對(duì)稱軸的位置.由于拋物線的對(duì)稱軸是直線
,故:①時(shí),對(duì)稱軸為軸;②(即、同號(hào))時(shí),對(duì)稱軸在軸左側(cè);③(即、異號(hào))時(shí),對(duì)稱軸在軸右側(cè).
(3)的大小決定拋物線與軸交點(diǎn)的位置.
當(dāng)時(shí),,∴拋物線與軸有且只有一個(gè)交點(diǎn)(0,):
①,拋物線經(jīng)過(guò)原點(diǎn); ②,與軸交于正半軸;③,與軸交于負(fù)半軸.
以上三點(diǎn)中,當(dāng)結(jié)論和條件互換時(shí),仍成立.如拋物線的對(duì)稱軸在軸右側(cè),則 .
11.用待定系數(shù)法求二次函數(shù)的解析式
(1)一般式:.已知圖像上三點(diǎn)或三對(duì)、的值,通常選擇一般式.
(2)頂點(diǎn)式:.已知圖像的頂點(diǎn)或?qū)ΨQ軸,通常選擇頂點(diǎn)式.
(3)交點(diǎn)式:已知圖像與軸的交點(diǎn)坐標(biāo)、,通常選用交點(diǎn)式:.
12.直線與拋物線的交點(diǎn)
(1)軸與拋物線得交點(diǎn)為(0, ).
(2)拋物線與軸的交點(diǎn)
二次函數(shù)的圖像與軸的兩個(gè)交點(diǎn)的橫坐標(biāo)、,是對(duì)應(yīng)一元二次方程
的兩個(gè)實(shí)數(shù)根.拋物線與軸的交點(diǎn)情況可以由對(duì)應(yīng)的一元二次方程的根的判別式判定:
①有兩個(gè)交點(diǎn)()拋物線與軸相交;
②有一個(gè)交點(diǎn)(頂點(diǎn)在軸上)()拋物線與軸相切;
③沒(méi)有交點(diǎn)()拋物線與軸相離.
(3)平行于軸的直線與拋物線的交點(diǎn)
同(2)一樣可能有0個(gè)交點(diǎn)、1個(gè)交點(diǎn)、2個(gè)交點(diǎn).當(dāng)有2個(gè)交點(diǎn)時(shí),兩交點(diǎn)的縱坐標(biāo)相等,設(shè)縱坐
標(biāo)為,則橫坐標(biāo)是的兩個(gè)實(shí)數(shù)根.
(4)一次函數(shù)的圖像與二次函數(shù)的圖像的交點(diǎn),由方程組 的解的數(shù)目來(lái)確定:①方程組有兩組不同的解時(shí)與有兩個(gè)交點(diǎn); ②方
程組只有一組解時(shí)與只有一個(gè)交點(diǎn);③方程組無(wú)解時(shí)與沒(méi)有交點(diǎn).
(5)拋物線與軸兩交點(diǎn)之間的距離:若拋物線與軸兩交點(diǎn)為,則
※ 多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)180?(n≥3,n是正整數(shù)),外角和等于360?
※ 平行線分線段成比例定理:
(1)平行線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。
如圖:a∥b∥c,直線l1與l2分別與直線a、b、c相交與點(diǎn)A、B、C
D、E、F,則有
(2)推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例。
如圖:△ABC中,DE∥BC,DE與AB、AC相交與點(diǎn)D、E,則有:
※ 直角三角形中的射影定理:如圖:Rt△ABC中,∠ACB=90o,CD⊥AB于D,則有:
(1)(2)(3)
※ 圓的有關(guān)性質(zhì):
(1)垂徑定理:如果一條直線具備以下五個(gè)性質(zhì)中的任意兩個(gè)性質(zhì):①經(jīng)過(guò)圓心;②垂直弦;③平分弦;④平分弦所對(duì)的劣弧;⑤平分弦所對(duì)的優(yōu)弧,那么這條直線就具有另外三個(gè)性質(zhì).注:具備①,③時(shí),弦不能是直徑.(2)兩條平行弦所夾的弧相等.(3)圓心角的度數(shù)等于它所對(duì)的弧的度數(shù).(4)一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.(5)圓周角等于它所對(duì)的弧的度數(shù)的一半.(6)同弧或等弧所對(duì)的圓周角相等.(7)在同圓或等圓中,相等的圓周角所對(duì)的弧相等.(8)90?的圓周角所對(duì)的弦是直徑,反之,直徑所對(duì)的圓周角是90?,直徑是最長(zhǎng)的弦.(9)圓內(nèi)接四邊形的對(duì)角互補(bǔ).
※ 三角形的內(nèi)心與外心:三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心.三角形的內(nèi)心就是三內(nèi)角角平分線的交點(diǎn).三角形的外接圓的圓心叫做三角形的外心.三角形的外心就是三邊中垂線的交點(diǎn).
常見(jiàn)結(jié)論:(1)Rt△ABC的三條邊分別為:a、b、c(c為斜邊),則它的內(nèi)切圓的半徑;
(2)△ABC的周長(zhǎng)為,面積為S,其內(nèi)切圓的半徑為r,則
※ 弦切角定理及其推論:
(1)弦切角:頂點(diǎn)在圓上,并且一邊和圓相交,另一邊和圓相切的角叫做弦切角。如圖:∠PAC為弦切角。
(2)弦切角定理:弦切角度數(shù)等于它所夾的弧的度數(shù)的一半。
如果AC是⊙O的弦,PA是⊙O的切線,A為切點(diǎn),則
推論:弦切角等于所夾弧所對(duì)的圓周角(作用證明角相等)
如果AC是⊙O的弦,PA是⊙O的切線,A為切點(diǎn),則
※ 相交弦定理、割線定理、切割線定理:
相交弦定理:圓內(nèi)的兩條弦相交,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。 如圖①,即:PA·PB = PC·PD
割線定理 :從圓外一點(diǎn)引圓的兩條割線,這點(diǎn)到每條割線與圓交點(diǎn)的兩條線段長(zhǎng)的積相等。
如圖②,即:PA·PB = PC·PD
切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。如圖③,即:PC2 = PA·PB
① ② ③
※ 面積公式:
①S正△=×(邊長(zhǎng))2.
②S平行四邊形=底×高.
③S菱形=底×高=×(對(duì)角線的積),
④S圓=πR2.
⑤l圓周長(zhǎng)=2πR.
⑥弧長(zhǎng)L=.
⑦
⑧S圓柱側(cè)=底面周長(zhǎng)×高=2πrh,S全面積=S側(cè)+S底=2πrh+2πr2
⑨S圓錐側(cè)=×底面周長(zhǎng)×母線=πrb, S全面積=S側(cè)+S底=πrb+πr2